You’ll also need to import numpy to get started:
import numpy as np
- | - |
---|---|
np.loadtxt('file.txt') |
From a text file |
np.genfromtxt('file.csv',delimiter=',') |
From a CSV file |
np.savetxt('file.txt',arr,delimiter=' ') |
Writes to a text file |
np.savetxt('file.csv',arr,delimiter=',') |
Writes to a CSV file |
- | - |
---|---|
np.array([1,2,3]) |
One dimensional array |
np.array([(1,2,3),(4,5,6)]) |
Two dimensional array |
np.zeros(3) |
1D array of length 3 all values 0 |
np.ones((3,4)) |
3x4 array with all values 1 |
np.eye(5) |
5x5 array of 0 with 1 on diagonal (Identity matrix) |
np.linspace(0,100,6) |
Array of 6 evenly divided values from 0 to 100 |
np.arange(0,10,3) |
Array of values from 0 to less than 10 with step 3 (eg [0,3,6,9]) |
np.full((2,3),8) |
2x3 array with all values 8 |
np.random.rand(4,5) |
4x5 array of random floats between 0–1 |
np.random.rand(6,7)*100 |
6x7 array of random floats between 0–100 |
np.random.randint(5,size=(2,3)) |
2x3 array with random ints between 0–4 |
- | - |
---|---|
arr.size |
Returns number of elements in arr |
arr.shape |
Returns dimensions of arr (rows,columns) |
arr.dtype |
Returns type of elements in arr |
arr.astype(dtype) |
Convert arr elements to type dtype |
arr.tolist() |
Convert arr to a Python list |
np.info(np.eye) |
View documentation for np.eye |
- | - |
---|---|
np.copy(arr) |
Copies arr to new memory |
arr.view(dtype) |
Creates view of arr elements with type dtype |
arr.sort() |
Sorts arr |
arr.sort(axis=0) |
Sorts specific axis of arr |
two_d_arr.flatten() |
Flattens 2D array two_d_arr to 1D |
arr.T |
Transposes arr (rows become columns and vice versa) |
arr.reshape(3,4) |
Reshapes arr to 3 rows, 4 columns without changing data |
arr.resize((5,6)) |
Changes arr shape to 5x6 and fills new values with 0 |
- | - |
---|---|
np.append(arr,values) |
Appends values to end of arr |
np.insert(arr,2,values) |
Inserts values into arr before index 2 |
np.delete(arr,3,axis=0) |
Deletes row on index 3 of arr |
np.delete(arr,4,axis=1) |
Deletes column on index 4 of arr |
- | - |
---|---|
np.concatenate((arr1,arr2),axis=0) |
Adds arr2 as rows to the end of arr1 |
np.concatenate((arr1,arr2),axis=1) |
Adds arr2 as columns to end of arr1 |
np.split(arr,3) |
Splits arr into 3 sub-arrays |
np.hsplit(arr,5) |
Splits arr horizontally on the 5th index |
- | - |
---|---|
arr[5] |
Returns the element at index 5 |
arr[2,5] |
Returns the 2D array element on index [2][5] |
arr[1]=4 |
Assigns array element on index 1 the value 4 |
arr[1,3]=10 |
Assigns array element on index [1][3] the value 10 |
arr[0:3] |
Returns the elements at indices 0,1,2 (On a 2D array: returns rows 0,1,2) |
arr[0:3,4] |
Returns the elements on rows 0,1,2 at column 4 |
arr[:2] |
Returns the elements at indices 0,1 (On a 2D array: returns rows 0,1) |
arr[:,1] |
Returns the elements at index 1 on all rows |
arr<5 |
Returns an array with boolean values |
(arr1<3) & (arr2>5) |
Returns an array with boolean values |
~arr |
Inverts a boolean array |
arr[arr<5] |
Returns array elements smaller than 5 |
- | - |
---|---|
np.add(arr1,arr2) |
Elementwise add arr2 to arr1 |
np.subtract(arr1,arr2) |
Elementwise subtract arr2 from arr1 |
np.multiply(arr1,arr2) |
Elementwise multiply arr1 by arr2 |
np.divide(arr1,arr2) |
Elementwise divide arr1 by arr2 |
np.power(arr1,arr2) |
Elementwise raise arr1 raised to the power of arr2 |
np.array_equal(arr1,arr2) |
Returns True if the arrays have the same elements and shape |
np.sqrt(arr) |
Square root of each element in the array |
np.sin(arr) |
Sine of each element in the array |
np.log(arr) |
Natural log of each element in the array |
np.abs(arr) |
Absolute value of each element in the array |
np.ceil(arr) |
Rounds up to the nearest int |
np.floor(arr) |
Rounds down to the nearest int |
np.round(arr) |
Rounds to the nearest int |
- | - |
---|---|
np.add(arr,1) |
Add 1 to each array element |
np.subtract(arr,2) |
Subtract 2 from each array element |
np.multiply(arr,3) |
Multiply each array element by 3 |
np.divide(arr,4) |
Divide each array element by 4 (returns np.nan for division by zero) |
np.power(arr,5) |
Raise each array element to the 5th power |
- | - |
---|---|
np.mean(arr,axis=0) |
Returns mean along specific axis |
arr.sum() |
Returns sum of arr |
arr.min() |
Returns minimum value of arr |
arr.max(axis=0) |
Returns maximum value of specific axis |
np.var(arr) |
Returns the variance of array |
np.std(arr,axis=1) |
Returns the standard deviation of specific axis |
arr.corrcoef() |
Returns correlation coefficient of array |